(1+根号2)乘以x的平方-(1-根号2)乘以X=0怎么解

问题描述:

(1+根号2)乘以x的平方-(1-根号2)乘以X=0怎么解

(1+√2)x^2-(1-√2)x=0
化简得,x[(1+√2)x-(1-√2)]=0
即x=0或x=(1-√2)/(1+√2)
所以方程的解为x=0或x=(1-√2)/(1+√2)=2√2-3 ((1-√2)(1+√2)=-1)

(1+√2)x^2-(1-√2)x=0
x[(1+√2)x-(1-√2)]=0
x=0或x=(1-√2)/(1+√2)=-(1-√2)^2=2√2-3
x=0或x=2√2-3