如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=34AB2其中正确的结论有(  )A. 1个B. 2个C. 3个D. 4个

问题描述:

如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接BD,CG.有下列结论:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=

3
4
AB2
其中正确的结论有(  )
A. 1个
B. 2个
C. 3个
D. 4个

①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=12CG(30°角所对直角边等于斜边一半)、BG=12CG,故可得出BG+DG=CG,即②也正...
答案解析:先判断出△ABD、BDC是等边三角形,然后根据等边三角形的三心(重心、内心、垂心)合一的性质,结合菱形对角线平分一组对角,三角形的判定定理可分别进行各项的判断.
考试点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.
知识点:此题考查了菱形的性质、全等三角形的判定与性质及等边三角形的判定与性质,综合的知识点较多,注意各知识点的融会贯通,难度一般.