如图,在平面直角坐标系中,已知点A(-4,0),B(0,3),对△AOB连续作旋转变换,依次得到三角形(1),(2),(3),(4),…,那么第(7)个三角形的直角顶点的坐标是______,第(2011)个三角形的直角顶点坐标是______.
问题描述:
如图,在平面直角坐标系中,已知点A(-4,0),B(0,3),对△AOB连续作旋转变换,依次得到三角形(1),(2),(3),(4),…,那么第(7)个三角形的直角顶点的坐标是______,第(2011)个三角形的直角顶点坐标是______.
答
知识点:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了勾股定理以及图形变化的规律.
∵A(-4,0),B(0,3),∴AB=5,∴第三个和第四个直角三角形的直角顶点的坐标是(12,0),∵对△AOB连续作三次旋转变换回到原来的状态,∴第(7)个三角形的直角顶点的横坐标等于12×2=24,∴第(7)个三角形的...
答案解析:由A(-4,0),B(0,3),根据勾股定理得AB=5,而对△AOB连续作三次旋转变换回到原来的状态,并且第三个和第四个直角三角形的直角顶点的坐标是(12,0),所以第(7)个三角形的直角顶点的横坐标等于12×2=24,第(2011)个三角形的直角顶点的横坐标等于670×12=8040,即可得到它们的坐标.
考试点:旋转的性质;坐标与图形性质.
知识点:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了勾股定理以及图形变化的规律.