某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修三门,则每位同学不同的选修方案种数是(  )A. 120B. 98C. 63D. 56

问题描述:

某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修三门,则每位同学不同的选修方案种数是(  )
A. 120
B. 98
C. 63
D. 56

∵A,B,C三门由于上课时间相同,至多选一门
第一类A,B,C三门课都不选,有C73=35种方案;
第二类A,B,C中选一门,剩余7门课中选两门,有C31C72=63种方案.
∴根据分类计数原理知共有35+63=98种方案.
故选B
答案解析:A,B,C三门由于上课时间相同至多选一门,A,B,C三门课都不选,有C73=35种方案;A,B,C中选一门,剩余7门课中选两门,有C31C72=63种方法,根据分类计数原理得到结果.
考试点:计数原理的应用.
知识点:本题考查分类计数问题,这是经常出现的一个问题,解题时一定要分清做这件事需要分为几类,每一类包含几种方法,把几个步骤中数字相加得到结果.