将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,这三个圆心角中最小的圆心角度数为______.

问题描述:

将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,这三个圆心角中最小的圆心角度数为______.

由题意可得,三个圆心角的和为360°,
又因为三个圆心角的度数比为1:2:3,
所以最小的圆心角度数为:360°×

1
6
=60°.
故答案为:60°.
答案解析:将一个圆分割成三个扇形,它们的圆心角的和为360°,再由三个圆心角的度数比为1:2:3,可求出最小的圆心角度数.
考试点:认识平面图形.
知识点:解答此题的关键是由题意得出三个圆心角的和为360°.