如图所示,将一张长方形的纸对折,可得一条折痕(图中虚线),继续对折,对折时每次的折痕与上次的折痕保持平行,得到3条折痕,如图(2)所示,连续对折三次后,可以得到7条折痕,那么对折四次可以得到15条折痕,如果对折n次,可以得到( )条折痕.A. 2n-1B. 2n-1C. n2-n+1D. n2-1
问题描述:
如图所示,将一张长方形的纸对折,可得一条折痕(图中虚线),继续对折,对折时每次的折痕与上次的折痕保持平行,得到3条折痕,如图(2)所示,连续对折三次后,可以得到7条折痕,那么对折四次可以得到15条折痕,如果对折n次,可以得到( )条折痕.
A. 2n-1
B. 2n-1
C. n2-n+1
D. n2-1
答
知识点:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.
答案解析:先求出第一次对折的折痕长,再求第二次,从而找出规律求出5第n次即可.
考试点:翻折变换(折叠问题);规律型:图形的变化类.
知识点:主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.