已知直线l过直线2x+y-5=0和直线x+2y-4=0的交点,且在两坐标轴上的截距互为相反数,则直线l的方程为(  )A. x-y-1=0B. x+y-3=0或x-2y=0C. x-y-1=0或x-2y=0D. x+y-3=0或x-y-1=0

问题描述:

已知直线l过直线2x+y-5=0和直线x+2y-4=0的交点,且在两坐标轴上的截距互为相反数,则直线l的方程为(  )
A. x-y-1=0
B. x+y-3=0或x-2y=0
C. x-y-1=0或x-2y=0
D. x+y-3=0或x-y-1=0

联立已知的两直线方程得:

2x+y−5=0
x+2y−4=0
,解得:
x=2
y=1
,所以两直线的交点坐标为(2,1),
因为直线l在两坐标轴上的截距互为相反数,
①当直线l与坐标轴的截距不为0时,可设直线l的方程为:x-y=a,
直线l过两直线的交点,所以把(2,1)代入直线l得:a=1,则直线l的方程为x-y=1即x-y-1=0;
②当直线l与两坐标的截距等于0时,设直线l的方程为y=kx,
直线l过两直线的交点,所以把(2,1)代入直线l得:k=
1
2
,所以直线l的方程为y=
1
2
x即x-2y=0.
综上①②,直线l的方程为x-y-1=0或x-2y=0.
故选C.
答案解析:先联立已知的两条直线方程求出交点的坐标,由直线l与两坐标轴的截距互为相反数,分两种情况考虑:①当直线l与坐标轴的截距不为0时,设出直线l的截距式方程x-y=a,把交点坐标代入即可求出a的值,得到直线l的方程;②当直线l与坐标轴的截距为0时,设直线l的方程为y=kx,把交点坐标代入即可求出k的值,得到直线l的方程.综上,得到所有满足题意的直线l的方程.
考试点:直线的两点式方程;两条直线的交点坐标.

知识点:此题考查学生会根据两直线的方程求两直线的交点坐标,考查了分类讨论的数学思想,是一道综合题.