连续的平方和,比如1方+2方+3方+……+n方,最后的公式是什么,

问题描述:

连续的平方和,比如1方+2方+3方+……+n方,最后的公式是什么,

1^2=1/6*1(2*1+1)(1+1)=1/6*6=1
1^2+2^2=1/6*(2*2+1)(2+1)=1/6*30=5
.
假设1方+2方+3方+……+N方=1/6n(2n+1)(n+1)

1^2+2^2+3^2+……+n^2+(n+1)^2
=1/6n(2n+1)(n+1)+(n+1)^2
=1/6(n+1)(2n^2+n+6n+6)
=1/6*(n+1)(2n+3)(n+2)
=1/6*(n+1)[2(n+1)+1][(n+1)+1]
假设成立
得证