1/1x2+1/2x3+1/3x4+…+1/2013x2014怎么算
问题描述:
1/1x2+1/2x3+1/3x4+…+1/2013x2014怎么算
答
因为1/n(n+1)=1/n-1/(n+1)
所以原式=(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/2013-1/2014)=1-1/2014=2013/2014