1*2+2*3+3*4.+N*(N+1) 用什么公式算啊直接在后面等于啊!

问题描述:

1*2+2*3+3*4.+N*(N+1) 用什么公式算啊
直接在后面等于啊!

Sn=1*2+2*3+3*4......+n(n+1)
=1/3*1*2*3+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+...+1/3[n(n+1)(n+2)-(n-1)n(n+1)]
=1/3[1*2*3+2*3*4-1*2*3+3*4*5-2*3*4+...+n(n+1)(n+2)-(n-1)n(n+1)]
=1/3n(n+1)(n+2)

解法一:(裂项相消)

n(n+1) = 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
所以
1*2+2*3+3*4.+N*(N+1) = 1/3(1*2*3 - 0) + 1/3(2*3*4 - 1*2*3)+1/3(3*4*5 - 2*3*4) +.+ 1/3[n(n+1)(n+2) -(n-1)n(n+1)]
= 1/3[(1*2*3 - 0)+(2*3*4 - 1*2*3)+(3*4*5 - 2*3*4)+.+[n(n+1)(n+2) -(n-1)n(n+1)]]
= 1/3n(n+1)(n+2)
解法二:(分别求和)
因 n(n+1) = n^2 + n

1*2+2*3+3*4.+N*(N+1)
= (1^2 + 2^2 +3^3+.+n^2) +(1+2+3+...+n)
= 1/6n(n+1)(2n+1) + 1/2n(n+1)
= 1/3n(n+1)(n+2)