是否存在一个等比数列an 使其满足下列三个条件 (1) a1+a6=11且a3a4=32/9 (2)a(n+1)>an (n为下角标) (3)少存在一个m(m为正整数m>4) 使2/3a(m-1) am^2 a(m+1)+4/9依次成等差数列若存在写出数列的通项公式 若不存在说明理由
问题描述:
是否存在一个等比数列an 使其满足下列三个条件 (1) a1+a6=11且a3a4=32/9 (2)a(n+1)>an (n为下角标) (3)
少存在一个m(m为正整数m>4) 使2/3a(m-1) am^2 a(m+1)+4/9依次成等差数列
若存在写出数列的通项公式 若不存在说明理由
答
令an=a1*q^(n-1).a3*a4=a1*q^2*a1*q^3=a1^2*q^5=a1*(a1*q^5)=a1*a6.即,a1+a6=11,a1*a6=32/9.解得a1,a6=1/3,32/3.又a(n+1)>an,故a1=1/3,a6=32/3.而若又满足第三个条件,则有:2/3*a1*q^(m-2)+a1*q^m+4/9=(2*a1*q^(m-1)...