如果a^2+a一1=o,求a^5一5a的值.

问题描述:

如果a^2+a一1=o,求a^5一5a的值.

a²+ a - 1 = 0
a² - 1 = -a (1)
a²+1 = 2 - a (2)
a^5 - 5a = a(a^4 - 1) - 4a
= a(a²+1)(a² - 1) - 4a
= a(2 - a)(-a) -4a
= a²(a - 2) - 4a
= (1 - a)(a - 2) - 4a
= -a² + 3a - 2 - 4a
= -a² - a - 2
= -1 - 2
= -3

因为a^2+a-1=0
a^5-5a
=(a^5+a^4-a^3)-a^4-a^3+a^2+2a^3+2a^2-2a-3a^2-3a
=a^3(a^2+a-1)-a^2(a^2+a-1)+2a(a^2+a-1)-2(a^2+a)
=0+0+0-3
=-3
所以所求代数式的值是-3