在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
问题描述:
在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
答
知识点:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
(1)设乙队单独完成需x天.
根据题意,得:
×20+(1 60
+1 x
)×24=1.1 60
解这个方程得:x=90.
经检验,x=90是原方程的解.
∴乙队单独完成需90天.
答:乙队单独完成需90天.
(2)设甲、乙合作完成需y天,则有(
+1 60
)×y=1.1 90
解得,y=36,
①甲单独完成需付工程款为60×3.5=210(万元).
②乙单独完成超过计划天数不符题意,
③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).
答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.
答案解析:(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.
(2)把在工期内的情况进行比较.
考试点:分式方程的应用.
知识点:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.