一辆快车与一辆慢车分别从甲、乙两站同时相对开出,在距离中点5千米处相遇,已知慢车的速度是快车的《三分之二》,甲、乙两站的距离是多少
问题描述:
一辆快车与一辆慢车分别从甲、乙两站同时相对开出,在距离中点5千米处相遇,已知慢车的速度是快车的《三分之二》,甲、乙两站的距离是多少
答
设甲乙两地的一半距离为A
(A+5)/(A-5)=3/2
A=25千米
甲乙两地距离:2A=50千米
答
快车比慢车多走了2*5=10千米,因此快车走了10/(1-2/3) = 30千米,慢车走了20千米,甲乙两地距离20+30=50千米
答
设总路程为s,V甲=x,V乙=2x/3
(2s+5)/x=(2s-5)/(2x/3)
能看明白不?没有公式编辑器费死劲了,列的是分式方程
答
设快车速度v,则慢车是三分之二v,同时行驶了t时间单位,甲乙相距S
推出:vt-2/3vt=5000
推出:vt=15000
推出:vt-5000=1/2S
推出:S=20000米=20千米
答
这是一道相遇问题,可用正比例的方法来求.这么跟你说吧,既然是相遇问题,两车的相遇时间也一定相同,所以两车的距离比就是两车的速度比,距离:速度=时间慢车与快车的速度比是2:3慢车与快车的距离比也是2:3然后你再想...
答
(v+(2/3)v)t=s
v*t=(s/2)+5
(2/3)v*t=(s/2)-5
自己会算吧,不能太依赖别人哦。
自己能看懂吧。
答
正解,如上,50