1002-992+982-972……+22-12 后面的2是2次方

问题描述:

1002-992+982-972……+22-12 后面的2是2次方

1002-992+982-972+…+22-12
=(1002-12)-(992-22)+(982-32)-…+(522-492)-(512-502)
=(100+1)(100-1)-(99+2)(99-2)+(98+3)(98-3)-…+(52+49)(52-49)-(51+50)(51-50)
=101×99-101×97+101×95-…+101×3-101×1
=101×(99-97+95-…+3-1)
=101×(2+2+…+2)
=101×25×2
=5050.

原式
=(100-99)(100+99)+(98-97)(98+97)+……+(2-1)(2+1)
=100+99+98+97+……+2+1
=(1+100)*100/2
=5050