设f(x)在【0,1】上连续,且f(0)=f(1).证明:一定存在Xo∈【0,1/2】,使f(Xo)=f(Xo+1/2)
问题描述:
设f(x)在【0,1】上连续,且f(0)=f(1).证明:一定存在Xo∈【0,1/2】,使f(Xo)=f(Xo+1/2)
答
考虑辅助函数g(x)=f(x)-f(x+1/2),0
设f(x)在【0,1】上连续,且f(0)=f(1).证明:一定存在Xo∈【0,1/2】,使f(Xo)=f(Xo+1/2)
考虑辅助函数g(x)=f(x)-f(x+1/2),0