答
(1)设租用一辆甲型汽车的费用是x元,租用一辆乙型汽车的费用是y元.
由题意得,;
解得:,
答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.
(2)设租用甲型汽车z辆,租用乙型汽车(6-z)辆.
由题意得
|
16z+18(6−z)≥100 |
800z+850(6−z)≤5000 |
|
|
,
解得2≤z≤4,
由题意知,z为整数,
∴z=2或z=3或z=4,
∴共有3种方案,分别是:
方案一:租用甲型汽车2辆,租用乙型汽车4辆;
方案二:租用甲型汽车3辆,租用乙型汽车3辆;
方案三:租用甲型汽车4辆,租用乙型汽车2辆.
方案一的费用是800×2+850×4=5000(元);
方案二的费用是800×3+850×3=4950(元);
方案三的费用是800×4+850×2=4900(元);
∵5000>4950>4900;
∴最低运费是方案三的费用:4900元;
答:共有三种方案,分别是:
方案一:租用甲型汽车2辆,租用乙型汽车4辆;
方案二:租用甲汽车3辆,租用乙型汽车3辆;
方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.
答案解析:(1)找出等量关系列出方程组再求解即可.本题的等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.
(2)得等量关系是“将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用相同”.
考试点:二元一次方程组的应用;一元一次不等式组的应用.
知识点:解题关键是要读懂题目的意思,找出(1)合适的等量关系:1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”.(2)根据租车费用不超过5000元列出方程组,再求解.