三角型ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c,成等比数列,cosB=3/4(1)求1/tanA+1/tanB的值(2)设向量BA点乘向量BC=3/2,求a+c的值
问题描述:
三角型ABC中,内角A,B,C的对边分别为a,b,c,已知a,b,c,成等比数列,cosB=3/4
(1)求1/tanA+1/tanB的值
(2)设向量BA点乘向量BC=3/2,求a+c的值
答
a,b,c成等比数列,ac=b^2,sinA*sinC=sinB^2 (a/sinA=Bb/sinB=c/sinC=2R)
cotA+cotC= cosA /sinA +cosC /sinC
=(cosA sinC +cosC sinA )/sinA sinC
=sin(A+C )/sinB ^2
=sinB /sin B^2
=1/sinB
=根号(1-cosB^2)=根号7/4
答
1.a,b,c成等比数列,ac=b^2,sinA*sinC=sinB^2 (a/sinA=Bb/sinB=c/sinC=2R)cotA+cotC= cosA /sinA +cosC /sinC =(cosA sinC +cosC sinA )/sinA sinC=sin(A+C )/sinB ^2=sinB /sin B^2=1/sinB=根号(1-cosB^2)=根号7/4 ...