不等式1/2^x-1>1/1-2^x-1的解集为

问题描述:

不等式1/2^x-1>1/1-2^x-1的解集为

1/(2^x -1)>1/(1- 2^(x-1))令2^(x-1)=t,则2^x=2*2^(x-1)=2t∴1/(2t-1)>1/(1-t)1/(2t-1)+1/(t-1)>0(3t-2)/[(2t-1)(t-1)]>0∴t>1或t∈﹙1/2,2/3﹚即2^(x-1)>1或1/2<2^(x-1)<2/3x-1>0 or -1<x-1<log﹙2﹚﹙2...