三边长均为整数,且最大边长为11的三角形的个数是多少?

问题描述:

三边长均为整数,且最大边长为11的三角形的个数是多少?

设较小的两边长为x、y且x≤y,则x≤y≤11,x+y>11,x、y∈N*.当x=1时,y=11;当x=2时,y=10,11;当x=3时,y=9,10,11;当x=4时,y=8,9,10,11;当x=5时,y=7,8,9,10,11;当x=6时,y=6,7,8,9,10,11;...
答案解析:根据题意,设较小的两边长为x、y且x≤y,可得关系式x≤y≤11,x+y>11,x、y∈N*;分别令x=1、2、3、4、5…、11,分别求得y的可取值,由分类计数原理,计算可得答案.
考试点:分类加法计数原理.
知识点:本题关键是列出约束条件,然后寻找x=1,2,…,11时,y的取值个数的规律,再用分类计数原理求解.