求一道三角函数最值的问题已知0≤θ≤π/2,求函数y=6sinθcosθ+(2√3)sin(θ+π/4)sin[(π/4)-θ]的最值

问题描述:

求一道三角函数最值的问题
已知0≤θ≤π/2,求函数y=6sinθcosθ+(2√3)sin(θ+π/4)sin[(π/4)-θ]的最值

y=6sinθcosθ+(2√3)sin(θ+π/4)sin[(π/4)-θ]
=3sin(2θ)+(√3)[cos(2θ)-cos(π/2)]
=3sin(2θ)+(√3)cos(2θ)
=2√3[√3/2sin(2θ)+1/2cos(2θ)]
=2√3sin(2θ+π/6)
最大值2√3,最小值-√3

原式等于3sin2θ-(2√3)*((√2)/2)*(sinθ+cosθ)*(sinθ-cosθ)*((√2)/2)=3sin2θ-(√3)(((sinθ)^2)-((cosθ)^2))=3sin2θ+(√3)(((cosθ)^2)-((sinθ)^2))=3sin2θ+(√3)(cos2θ)=(2√3)((0.5√3)sin2θ+0.5cos2...