证明sup{xn+yn}≤sup{xn}+sup{yn},sup{S}是指实数集合S的上确界我的证明如下“证明sup{xn+yn}≤sup{xn}+sup{yn}因为sup{xn}是{xn}的上确界,对任意β1>0,都存在{xn}中某元素x0使得sup{xn}-β<x0.那么可以给定一个β1,使得sup{xn}-β=x1.同理也能给定一个β2,使得sup{yn}-β2=y1而对任意给定的β3都有x1+y1≥sup{xn+yn}-β3.不妨令β3=β1+β2.那么就能得证”请问是否正确?如果不正确,请问这道题怎么证明呢

问题描述:

证明sup{xn+yn}≤sup{xn}+sup{yn},sup{S}是指实数集合S的上确界
我的证明如下“证明sup{xn+yn}≤sup{xn}+sup{yn}
因为sup{xn}是{xn}的上确界,对任意β1>0,都存在{xn}中某元素x0使得sup{xn}-β<x0.那么可以给定一个β1,使得sup{xn}-β=x1.同理也能给定一个β2,使得sup{yn}-β2=y1
而对任意给定的β3都有x1+y1≥sup{xn+yn}-β3.不妨令β3=β1+β2.那么就能得证”请问是否正确?如果不正确,请问这道题怎么证明呢

我的证明:
xn