已知tanx=-2,则sin^2*x+3cos^2*x/3sin^2*x -cos^2*x 的值为?
问题描述:
已知tanx=-2,则sin^2*x+3cos^2*x/3sin^2*x -cos^2*x 的值为?
答
因为 tanx=-2,所以原式=(2×2+3)/(3×2×2-1)=7/11
sin^2*x+3cos^2*x/3sin^2*x -cos^2*x上下同时除以cos^2*x于是得 (tan^2*x+3)/(3tan^2*x-1)
答
sin^2*x+3cos^2*x/3sin^2*x -cos^2*x上下同时除以cos^2*x于是得 (tan^2*x+3)/(3tan^2*x-1)
因为 tanx=-2,所以原式=(2×2+3)/(3×2×2-1)=7/11