(x^2+2x-8)/(x^3+2x^2+x)/{(x-2)/x .(x+4)/(x+1) 其中x=4/5

问题描述:

(x^2+2x-8)/(x^3+2x^2+x)/{(x-2)/x .(x+4)/(x+1) 其中x=4/5

[x^2+2x-8/x^3+2x^2+x]÷[(x-2/x)×(x+4/x+1)]
=[(x+4)(x-2)/x(x+1)^2]÷[(x-2)/x*(x+4)/(x+1)]
=[(x+4)(x-2)/x(x+1)^2]÷[(x-2)(x+4)/x(x+1)]
=[(x+4)(x-2)/x(x+1)^2]*x(x+1)/(x-2)(x+4)
=1/x(x+1)^2*x(x+1)
=1/(x+1)
因为x=4/5,则原式=5/9

(x^2+2x-8)/(x^3+2x^2+x)/{(x-2)/x .(x+4)/(x+1) =(x+4)(x-2)/[x(x+1)^2]/{(x+4)(x-2)/[x(x+1)]}=1/[x(x+1)^2]/{1/[x(x+1)]}=1/[x(x+1)^2][x(x+1)]=1/(x+1)=1/(1+4/5)=5/9