分解因式:(z^2+1)^2-4z(z^2+1)+4z^2

问题描述:

分解因式:(z^2+1)^2-4z(z^2+1)+4z^2

(z^2+1)^2-4z(z^2+1)+4z^2
=(z^2+1 -2z)^2
=(z-1)^4

(z^2+1)^2-4z(z^2+1)+4z^2
=(z^2+1)^2-2*(2z)*(z^2+1)+(2z)^2
=[(z^2+1)-(2z)]^2
=[(z-1)^2]^2
=(z-1)^4

(z^2+1)^2-4z(z^2+1)+4z^2
=[(z²+1)-2z]²
=[(z-1)²]²
=(z-1)^4

原式=(z²+1)²-2×(z²+1)×2z+(2z)²
=[(z²+1)-2z]²
=(z²-2z+1)²
=[(z-1)²]²
=(z-1)^4