求定积分∫(上限为2,下限为0)1/4+(x)的平方dx

问题描述:

求定积分∫(上限为2,下限为0)1/4+(x)的平方dx

∫(0,2) 1/(4+x²) dx
令x=2tany,则y积分区域从0到π/4
积分可变成:∫(0,π/4) cos²y/2 dtany=∫(0,π/4) 1/2 dy=π/8
∴∫(0,2) 1/(4+x²) dx=π/8

∫(2,0) 1/(4+x²) dx
=∫(2,0) (1/4)/(1+x²/4) dx
=∫(2,0) (1/2)arctan(x/2) dx
=(1/2)arctan(x/2)|(2,0)
=π/8
arctan'(x) = 1/(1+x²)
arctan(x/2) = (1/2)/(1+(x²/4)) =2/(1+x²)