谁知道y等于e,x的平方减1ncosx,求dy

问题描述:

谁知道y等于e,x的平方减1ncosx,求dy

y=e^(x^2)-lncosx,这是函数的和差以及复合函数求导的综合应用,有:
y'=e^(x^2)*(x^2)'-(1/cosx)*(cosx)'
=e^(x^2)*(2x)-(1/cosx)*(-sinx)
=2x*e^(x^2)+tanx
所以:
dy=[2x*e^(x^2)+tanx]dx.