(x的平方+1)的自然对数的积分怎么算?
问题描述:
(x的平方+1)的自然对数的积分怎么算?
答
∫ln(x^2+1)dx(用分步积分法)
=xln(x^2+1)-∫2x^2/(x^2+1)dx
=xln(x^2+1)-∫2(x^2+1-1)/(x^2+1)dx
=xln(x^2+1)-∫2[1-1/(x^2+1)]dx
=xln(x^2+1)-2x+arctanx+Cxln(x^2+1)-∫2x^2/(x^2+1)dx?怎么得到这个?xln(x^2+1)-1/2∫2xd(x^2+1)?分步积分法,u=x,v=ln(x^2+1)∫ln(x^2+1)dx=∫vdu=uv-∫uv'dx