∫1/1+(x+2)^1/3dx
问题描述:
∫1/1+(x+2)^1/3dx
答案ln(1+t)前没有3
答
换元法,令(x+2)^1/3=t
x=t^3-2
dx=3t^2dt
∫1/[1+(x+2)^1/3]dx
=∫3t^2dt/(1+t)
=3∫(t^2-1+1)/(1+t)dt
=3∫[t-1+1/(1+t)]dt
=3t^2/2-3t+3ln(1+t)+C