1²-2²+3²-4²+5².2001²-2002²+2003²-2004²=

问题描述:

1²-2²+3²-4²+5².2001²-2002²+2003²-2004²=
为什么

因为:a^2-b^2=(a-b)(a+b)
所以,
原式=(1-2)(1+2)+(3-4)(3+4)+...+(2003-2004)(2003+2004)
=-(1+2+3+4+...+2003+2004)
=-2004*(2004+1)/2
=-2009010