星形线的参数方程的推导过程
问题描述:
星形线的参数方程的推导过程
希望用参数的形式推导出它的参数方程,这是选修4—4摆线后面的习题4,
答
最先对星形线进行研究是Johann Bernouli.星形线由于有四个尖端,所以有时也被称为四尖内摆线(tetracuspid).星形线于1836年被正式定名,首次出现在正式出版的图书(出版于维也纳)中.星形线还有许多有趣的名称:cubocycloid和paracycle. 星形线的周长为6*a,它所包围的面积为3*PI*a^2/8. 它与x轴围成的区域绕x轴旋转而成的旋转体体积为32*PI*a^3/105. 若星形线上某一点切线为T,则其斜率为tan(p),其中p为极坐标中的参数.相应的切线方程为 T: x*sin(p)+y*cos(p)=a*sin(2p)/2 . 如果切线T分别交x、y轴于点x(X,0)、y(0,Y),则线段xy恒为常数,且为a. 星形线是由半径为a/4的圆在半径为a的内侧转动形成的. 在第一象限 星形线 也可由靠在Y轴上一个线段在重力作用下扫过的图形
(阴影里的另一个弧是圆的一部分以做对比)