2/1*4/3*6/5*8/7*.(2n)/(2n-1)>√(2n+1)

问题描述:

2/1*4/3*6/5*8/7*.(2n)/(2n-1)>√(2n+1)

2^2 > 1*3
4^2 > 3*5
.
(2n)^2 > (2n-1)(2n+1)
∴(2*4*6*8*...2n)^2 > 1*3^2*5^2*7^2*...(2n-1)^2*(2n+1)
∴[(2*4*6*8*...2n)/(1*3*5*7*...(2n-1))]^2 > 2n+1
∴2/1*4/3*6/5*8/7*.(2n)/(2n-1) > √(2n+1)