求x^2/x-2的最小值,用均值不等式求

问题描述:

求x^2/x-2的最小值,用均值不等式求

(1)当x>2,即x-2>0时,x^2/(x-2)=[(x-2)+2]^2/(x-2)=[(x-2)^2+4(x-2)+4]/(x-2)=(x-2)+4/(x-2)+4≥2√[(x-2)·4/(x-2)]+4=8.∴x-2=4/(x-2),即x=4时,所求最小值为:8,此时不存在最大值.(2)x0时,x^2/(x-2)=-[(2-x)...