设f'(x)∫(0,2)f(x)dx=50,且f(0)=0,f(x)≥0,求∫(0,2)f(x)dx及f(x)

问题描述:

设f'(x)∫(0,2)f(x)dx=50,且f(0)=0,f(x)≥0,求∫(0,2)f(x)dx及f(x)

f'(x)是个函数∫(0 ,2) f(x) dx是个数值而f'(x) * ∫(0 ,2) f(x) dx又是个数值,则f'(x)必是常数函数即设f(x) = ax + b ,f'(x) = a ,x ≥ 0a * ∫(0 ,2) (ax + b) dx = 50a * [ax^2/2 + bx](0 ,2) = 50a * [a(2)^2/2 ...