已知lg2(3)=a,log3(7)=b,用a,b表示log14(56)

问题描述:

已知lg2(3)=a,log3(7)=b,用a,b表示log14(56)

运用换底:log14(56)=log3(56)/log3(14)=〔log3(7)+log3(8)〕/〔log3(7)+log3(2)〕log3(2)=1/log2(3)=1/alog3(8)=3log3(2)=3/a原式=(b+3/a)/(b+1/a)=(ab+3)/(ab+1)=1+2/(ab+1)