已知ABC是抛物线y平方等于二2px上的三个点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于D,E两点.求证:抛物线的顶点平分线段DE
问题描述:
已知ABC是抛物线y平方等于二2px上的三个点,且BC与x轴垂直,直线AB,AC分别与抛物线的轴交于D,E两点.求证:抛物线的顶点平分线段DE
答
抛物线参数方程为y=t,x=t^2/2p设B(t1^2/2p,t1),C(t1^2/2p,-t1),A(t2^2/2p,t2)所以求得AC的直线方程为y-t2=(t2-t1)(x-t2^2/2p)/((t2^2/2p)-(t1^2/2p))化简y-t2=2p(x-t2^2/2p)/(t1+t2)同理求得直线AB方程为y-t2=2p(x-t...