∫(1 + (sin x)^2)^(1/2) dx ∫1 / (1 - x^2) dx
问题描述:
∫(1 + (sin x)^2)^(1/2) dx ∫1 / (1 - x^2) dx
答
∫1 / (1 - x^2) dx =(1/2) ∫[1/ (1 - x)+1/(1+x) ]dx =(1/2)ln[(1+x)/(1-x)]+C
∫(1 + (sin x)^2)^(1/2) dx ∫1 / (1 - x^2) dx
∫1 / (1 - x^2) dx =(1/2) ∫[1/ (1 - x)+1/(1+x) ]dx =(1/2)ln[(1+x)/(1-x)]+C