已知二次函数f(x)=ax^2+bx+c和一次函数g(x)=-bx,其中a,b,c满足a>b>c,a+b+c=0(a,b,c∈R).
问题描述:
已知二次函数f(x)=ax^2+bx+c和一次函数g(x)=-bx,其中a,b,c满足a>b>c,a+b+c=0(a,b,c∈R).
(1)是否存在m∈R,使得当f(x)=-a成立时,f(m)+3)为正数并证明你的结论;
(2)求证:方程式f(x)=g(x)的两根都有小于2.
f(m)+3)应为f(m+3)
答
第一问不太明白题意"当f(x)=-a成立时"是什么意思呀..
先答一下第二问:
由a>b>c,a+b+c=0得a>0,c0,只要证对称轴右边的根小于2即可
取对称轴右边的根与2相减:
2- [-2b+根号(4b^2-4ac)]/2a
=2- [-b+根号(b^2-ac)]/a
=(2a/a)- [a+c+根号(a^2+ac+c^2)]/a
=[a-c-根号(a^2+ac+c^2)]/a
又(a-c)^2=a^2-2ac+c^2 ,其中-2ac>0>ac
所以(a-c)^2>a^2+ac+c^即[a-c-根号(a^2+ac+c^2)]>0
即对称轴右边的根小于2,所以两根都小于2.
第一问我再想想...- -!