∫1/(9x^2-4)^(1/2)dx

问题描述:

∫1/(9x^2-4)^(1/2)dx
不定积分九X平方减四的差开方分之DX

积分:dx/根号(x^2-a^2)(a>0)
令x=asect,0原式=积分:asecttantdt/atant
=积分:sectdt
=ln|sect+tant|+C
=ln|x/a+根号(x^2-a^2)/a|+C
=ln|x+根号(x^2-a^2|+C
∫1/(9x^2-4)^(1/2)dx
=积分:1/((3x)^2-2^2)dx
=1/3积分:1/(3x)^2-2^2)d3x
=1/3ln|3x+根号(9x^2-4|+C