已知函数f(x)的定义域为[0,6],它在[0,3]上是一次函数,在[3,6]上是二次函数,且当x∈[3,6]时,有f(x)小于等于f(5)=7,f(2)=f(6)=6,求函数f(x)解析式
问题描述:
已知函数f(x)的定义域为[0,6],它在[0,3]上是一次函数,在[3,6]上是二次函数,且当x∈[3,6]时,有f(x)小于等于f(5)=7,f(2)=f(6)=6,求函数f(x)解析式
答
二次函数的顶点为(5,7)
所以设 f(x)=a(x-5)²+7
f(6)=6
所以 a+7=6
a=-1
f(x)=-(x-5)²+7=- x²+10x-18
一次函数只知道过 (2,6),还缺别的条件f(x)小于等于f(5)=7,意思是顶点(5,7) f(2)=f(6)=6 ,不是等于对称轴是x=4吗是不是题出错了f(2)=f(6)=6 ,不是等于对称轴是x=4吗这个不对,因为(2,f(2))不在抛物线上哦那就是只有(2,6)还缺别的坐标?对头,还得告诉一次函数图象过那个点,或者告诉斜率如果图象连续,我猜想题的本意是说过(3,f(3))=(3,3)