高数(1+x)的a 次方 等价 1+ax证明
问题描述:
高数(1+x)的a 次方 等价 1+ax证明
请各位高手用无究小的定义证明,不要用导数
当x趋于0时,证明(1+x)^a-1等价于ax,不能用到导数的知识,请问名位高手能不能用无穷小的定义解决这个问题
答
这个不是很简单的吗?
用等价无穷小的定义直接得出了
因为 lim(1+x)^a/(1+ax)=1 (x→0)
所以 (1+x)^a 与 1+ax 等价无穷小 (x→0)