已知a与b是两条异面直线,直线m与n满足m⊥a,m⊥b,n⊥a,n⊥b,求证:m平行n.
问题描述:
已知a与b是两条异面直线,直线m与n满足m⊥a,m⊥b,n⊥a,n⊥b,求证:m平行n.
答
在直线a上取一点A,过A点作直线b'//b,由a,b是异面直线知,a和b不平行,即a和b'不平行
而直线a,b'相交于点A,所以a,b'确定了一个平面,设为β.
由m⊥a,m⊥b知m⊥a且m⊥b',m⊥平面β
同样由n⊥a,n⊥b,知n⊥平面β
所以m//n