f(x)=根号3 sin2x+2sin(兀/4+X)cos(兀/4+x)

问题描述:

f(x)=根号3 sin2x+2sin(兀/4+X)cos(兀/4+x)
(1)化简f(x)的表达式,并求f(X)的最小周期;
(2)当X属于「0,兀/2」时,求函数f(X)的值域

sin(π/2+α)= cosα
f(x)=√3sin2x+2sin(π/4+x)cos(π/4+x)
=√3sin2x+sin(π/2+2x)
=√3sin2x+cos2x
=2(√3/2sin2x+1/2cos2x)
=2(sin2xcosπ/6+cos2xsinπ/6)
=2sin(2x+π/6)
T=2π/2=π
x∈[0,π/2]
2x∈[0,π]
2x+π/6∈[π/6,5π/6]
sin(2x+π/6)∈[-1/2,1]