.已知二次函数f(x)在定义域(0,∞)上位增函数,且满足f(xy)=f(x)+f(y).f(2)=1
问题描述:
.已知二次函数f(x)在定义域(0,∞)上位增函数,且满足f(xy)=f(x)+f(y).f(2)=1
1 求证 f(8)=3
答
因为f(xy)=f(x)+f(y)
f(8)=f(2*4)=f(2)+f(4)=f(2)+f(2*2)=f(2)+f(2)+f(2)=3*f(2)
又因为f(2)=1
所以f(8)=3*f(2)=3