在学习了分式的乘除法之后,老师出了这样一道计算题:
问题描述:
在学习了分式的乘除法之后,老师出了这样一道计算题:
化简:(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1).
将(x-1)/(x-1)乘这个整式.用平方差公式解
答
连续使用平方差公式:(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1).=[(X-1)(X+1)](X^2+1)(X^4+1)(X^8+1)(X^16+1)/(X-1)=(X^2-1)(X^2+1)(X^4+1)(X^8+1)(X^16+1)/(X-1)=(X^4-4)(X^4+1)(X^8+1)(X^16+1)/(X-1)=(X^8-1)(X^8+1)(...正确率是百分之多少=(X^4-4)(X^4+1)(X^8+1)(X^16+1)/(X-1)这一步写错一个数据:=(X^4-1)(X^4+1)(X^8+1)(X^16+1)/(X-1)你还没回答我呢现在保证没问题。(x+1)(x^2+1)(x^4+1)(x^8+1)(x^16+1).=[(X-1)(X+1)](X^2+1)(X^4+1)(X^8+1)(X^16+1)/(X-1)=(X^2-1)(X^2+1)(X^4+1)(X^8+1)(X^16+1)/(X-1)=(X^4-1)(X^4+1)(X^8+1)(X^16+1)/(X-1)=(X^8-1)(X^8+1)(X^16+1)/(X-1)=(X^16-1)(X16+1)/(X-1)=(X^32-1)/(X-1)。