用导数求面积最小值
问题描述:
用导数求面积最小值
抛物线y=ax^2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S, 求使S达到最大值的a,b值, 并求Smax 要详细过程
答
抛物线y=ax^2+bx在第一象限内与直线x+y=4相切 ==> 方程组y=ax^2+bx,x+y=4有唯一解,即ax^2+(b+1)x-4=0有两个相等的实数根 ==> Δ=(b+1)^2+16a=0 ==> a=-[(b+1)^2]/16……(1) 令ax^2+bx=0 ==> x=0,x=-b/a 此抛物线与x...