已知x1,x2是关于x的一元二次方程x^2 - 2(m+2)x + 2m^2 - 1=0的两个实数根,且满足x1^2 - x2^2=0,求m的值

问题描述:

已知x1,x2是关于x的一元二次方程x^2 - 2(m+2)x + 2m^2 - 1=0的两个实数根,且满足x1^2 - x2^2=0,求m的值

根据韦达定理有:
X1 + X2 = 2(m+2)
而x1^2 - x2^2=0
则x1^2 - x2^2 = (X1 + X2 )(X1 - X2) = 0
X1 + X2 = 0
X1 - X2 = 0
由X1 + X2 = 0得:2(m+2)=0.m = -2
由X1 - X2 = 0得:判别式=0.4(m+2)^2 - 4(2m^2 - 1)=0.m = 5或 -1
当m = -2时,原方程:x^2 + 7=0无实数根,所以舍去.
综上,m = 5或 -1.