x^2+y^2=4 x-y=1 求(x+y)^2和(xy)^2

问题描述:

x^2+y^2=4 x-y=1 求(x+y)^2和(xy)^2

x-y=1,则(x-y)²=x²-2xy+y²=1²=1
则2xy=x²+y²-(x-y)²=4-1=3
(x+y)^2=x²+y²+2xy=4+3=7
(xy)^2 =(3/2)²=9/4