设θ是直线l的倾斜角,且cosθ=a<0,则θ的值为( ) A.π-arccosa B.arccosa C.-arccosa D.π+arccosa
问题描述:
设θ是直线l的倾斜角,且cosθ=a<0,则θ的值为( )
A. π-arccosa
B. arccosa
C. -arccosa
D. π+arccosa
答
因为θ是直线l的倾斜角,且cosθ=a<0,
由反三角函数可知,θ=arccosa,
所以直线的倾斜角为:arccosa.
故选B.
相关推荐
- 1.若直线L经过原点和点A(-2,-2),则它的斜率为( ) A.-1 B.1 C.1或-1 D.0 2.直线X+根号3×Y+5=0的倾斜角是( ) A.30° B.120° C.60° D.150° 3.直线X+Y+1=0的倾斜角与在Y轴上的截距分别是( ) A.135°,1 B.45°,-1 C.45°,1 D.135°,-1 4.经过两点(3,9)、(-1,1)的直线在X轴上的截距为( ) A.-3/2 B.-2/3 C.2/3 D.2 5.点P(x,y)在直线x+y-4=0上,O是坐标原点,则|OP|的最小值是( ) A.根号7 B.根号6 C.2倍根号2 D.根号5 6.已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程为( ) A.4x+2y=5 B.4x-2y=5 C.x+2y=5 D.x-2y=5 7.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为 A.0 B.-8 C.2 D.10 8.已知两条直线y=ax-2和y=(a+2)x+1互
- 3-sinx1.函数y=------------的值域为 3+sinx2.已知函数f(x)=2sin(wx+z)对任意x都有f(π/6+x)=f(π/6-x),则f(π/6)等于A.2或0 B.-2或2 C.0 D.-2或03.函数f(x)=cos(x+π/4)sin(π/4-x)-1/2是A.最小正周期为2π的偶函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为π的奇函数4.设x是第二象限角,则点P(sin(cosx),cos(cosx))在 象限5.已知a向量,b向量满足:ⅠaⅠ=3,ⅠbⅠ=2,Ⅰa+bⅠ=4,则Ⅰa-bⅠ=6.若函数f(x)=asin2x+btanx+1,且f(-3)=5,则f(π+3)=4cos四次方x-2cos2-17.已知函数f(x)=--------------------------------sin(π/4+x)sin(π/4-x)(1)求f(-(11π)/12)的值(2)当x属于[0,π/4)时,求g(x)=1/2f(x)+sin2x的
- 1.已知一扇形的圆心角是60°,所在圆的半径为10cm,求扇形的弧长及该弧所在的弓形的面积.2.化简:(1+sin x+cos x+2sin xcos x)/(1+sin x+cos x)3.若sin x+cos x=1,则sin x的n次方+cos x的n次方(n∈正整数)的值为()A.1 B.-1 C.±1 D 不能确定4.已知sin(3π-α)=√2*cos(3π/2+β)和√3cos(-α)=-√2cos(π+β),且0<α<π,求sinα若A、B为锐角三角形ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在第几象限?5.已知sinα>sinβ,那么下列命题成立的是()A.若α,β都是第一象限角,则cosα>cosβB.若α,β都是第二象限角,则tanα>tanβC.若α,β都是第三象限角,则cosα>cosβD.若α,β都是第四象限角,则tanα>tanβ6.(1)函数f(x)=sin x+|sin x|,x∈[0,2π]的图像与直线y=k有且仅有两个不同的交点,求k的
- 题1.已知x属于R,i为虚数单位,若(1_2i)(x+i)=4_3i,则x的值等于?(A._6 B._2 C.2 D.6) 题2.设向量a=(4sin阿法,3),b=(2,3cos阿法),且a平行b,则锐角阿法为?题3."k=1"是"直线x_y+k=0与圆x平方+y平方=1相交"的?(A.充分不必要 B.必要不充分 C.充分必要 D.不充分不必要)
- 设θ是直线l的倾斜角,且cosθ=a<0,则θ的值为( ) A.π-arccosa B.arccosa C.-arccosa D.π+arccosa
- 26.已知三角形ABC的三边长为a、b、c,面积为S,三角形A1B1C1的三边长分别未a1、b1、c1,面积为S1,且a大于a1,b大于b1,c大于c1,则S与S1的大小关系一定是A.S大于S1 B.S小于S1 C.S=S1 D.不确定27.正实数x,y满足xy=1,那么1/x*4+1/4y*4的最小值为A.1/2 B.5/8 C.1 D.根号228.设a,b是实数,且(1/1+a)-(1/1+b)=1/b-a,则1+b/1+a=A.(1正负根号5)处以2 B.正负(1+根号5)处以2 C.正负(3-根号5)处以2D.(3正负根号5)处以229.设a,b,c为实数,且a不等于0,抛物线y=ax*2+bx+c与x轴交于A,B两点,与y轴交于点C,且抛物线的定点在直线y=-1上,若三角形ABC是直角三角形,则RT三角形ABC面积的最大值是A.1 B.根号3 C.2 D.330.(2^3-1)(3^3-1)(4^3-1).(100^3-1)___________________________(除)的值
- 1.函数f(x)是(+∞,-∞)上的增函数,若对于x1,x2∈R都有f(x1)+f(x2)≥f(﹣x1)+f(﹣x2)成立,则必有( ) ………………A.x1≥x2 B.x1≤x2 C.x1+x2≥0 D.x1+x2≤02.若圆C1:x²+y²-2mx+m²-4=0与园C2:x²+y²+2x-4my+4m²-8=0相交,则m的取值范围?3.圆心在直线2x+y=0上,且与直线x+y-1=0切于点(2,-1)的圆的方程是?4.若集合A=﹛(x,y)| x²+y²≤16﹜,B=﹛﹙x,y﹚| x²+﹙y-2﹚²≤a-1﹜且A∩B=B,则a的取值范围?5.已知点P(x.,y.),直线L:x.x+y.y=r² ,且点P在圆O内,则直线L与圆O的位置关系为( )……………………A.相切 B.相离 C.相交 D.不能确定6.设一直角三角形两直角边的长均是区间(0,1)的随机数,则斜边的长小于3/4的概率为( )……………………A.9π/64 B.9/64 C.9π/16 D.9/167.从[0,1]之间选出两个
- 平面向量的超级难题1.三角形ABC的顶点A(3,1),B(x,-1),C(2,y),重心G(5/3,1).求:AB边上的中线长以及AB边上的高的长2.已知过点A(0,1),且斜率为k的直线l与圆c:(x-2)平方+(y-3)平方=1,相交于M,N 求:实数k的取值范围;若O为坐标原点,且向量OM * 向量ON=12,求k3.在三角形ABC中,角A,B,C的对边分别为a,b,c.且满足(2a-c)*cosB=bcosC.求:(1)角B的大小 (2)设向量m=(sinA,cos2A),向量n=(4k,1)(k>1),且向量m*向量n的最大值为5,求k4.点0在三角形ABC内部满足向量OA+2向量OB+2向量OC=向量0,则三角形ABC面积与凹四边形ABOC面积之比为5.已知向量a,b是两个非零向量,且a+3b与7a-5b垂直,a-4b与7a-2b垂直,则a与b的交角为
- 已知动点P与双曲线x^2/2-y^2/3=1的两个焦点F1F2的距离之和为定值,且cos∠F1PF2的最小值为-1/9(1)求动点P的轨迹方程(2)若已知点D(0,3),点M,N在动点P的轨迹上,且向量DM=λ向量DN,求实数λ的取值范围(1)F1(-√5,0),F2(√5,0),易知点P的轨迹是一个以F1F2为焦点的椭圆,有个知识点要知道,椭圆上的点,张角(∠F1PF2)最大处为短轴顶点,设点P在上顶点B处,则B(0,b),cos∠F1BO=b/a因为∠F1BF2=2∠F1BO,且cos∠F1BF2=-1/9,所以由倍角公式可得cos∠F1BO=2/3即b/a=2/3,又因为c^2=a^2-b^2,c=√5,联列方程组可得:a^2=9,b^2=4,所以轨迹方程为:x^2/9+y^2/4=1(2)向量DM=λ向量DN,即D,M,N三点共线;设三点所在直线为L,①当L斜率不存在时,易得:M(0,2),N(0,-2),则λ=1/5;或:M(0,-2),N(0,2),则λ=5;②当L斜率存在时,则设L:
- (3道选择+1道填空)若α、β是锐角,且sin(α+β)=2sinα,则α、β大小关系是( )A.α=β B.α大于β C.α小于β D.以上都有可能把函数y=cos(x+4π/3)沿x轴平移φ个单位(φ大于0),所得的图像关于原点对称,则φ的最小值为( )A.5π/2 B.π/6 C.π/3 D.π/2已知向量OA=1,向量OB=√2,OA·OB=0,点C在∠AOB内,且∠AOC=45°,设向量OC=mOA·nOB(m、n属于R),则m/n等于( )A.1/2 B.√2/2 C.=√2 D.3已知P1(2,-1),P2(0,5)且点P在P1P2的延长线上,|向量P1P|=2|向量PP2|,则点P的坐标为___________.
- 配位聚合 离子聚合
- 下列软件中属于操作系统的有