高二数学问题 求双曲线离心率
问题描述:
高二数学问题 求双曲线离心率
双曲线x²/a²-y²/b²=1(a>0,b>0)的左右焦点分别为F1F2,渐近线分别l1,l2,点P在第一象限内且在l1上,若l2⊥PF1,l2∥PF2,则双曲线的离心率是
答
点P在第一象限内且在l1上
∴l1:y=(b/a)x,P(p,bp/a)
l2∥PF2
∴-b/a=bp/a*(p-c) (右边为PF2的斜率)
p=c-p,
p=c/2-------①
l2⊥PF1
∴a/b=bp/a*(p+c) (右边为PF1的斜率)代入①
3a^2=b^2
c^2=a^2+b^2=4a^2
c^2/a^2=4=e^2
e=2